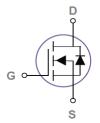
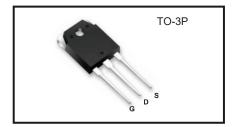


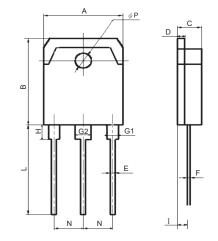
DAM050N020U1


N-Channel Enhancement Mode MOSFET

Features


- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Applications


- DC-DC Converters
- DC-AC Inverters for UPS
- SMPS and Motor Controls

V_{DSS} 200V $I_{D(@25^{\circ}C)}$ 50A $R_{DS(ON)}$ typ. 30mΩ

Package Dimensions

SYMBOLS	MILLIMETERS			
	MIN	MAX		
Α	15.10	15.90		
В	19.50	20.50		
С	4.70	4.90		
D	1.40	1.60		
E	0.90	1.10		
F	0.50	0.70		
G1	2.00	2.20		
G2	3.00	3.20		
Н	3.00	3.60		
I	1.20	1.60		
L	19.50	20.90		
N	5.25	5.65		
ΦР	3.10	3.30		

Absolute Maximum Ratings

(Tc = 25°C unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Drain-Source Voltage (Note1)		VDSS	200	V
Gate-Source Voltage		Vgs	±20	V
Drain Current Continuous		lο	50	Α
Pulsed Drain Current (Note2)		Ірм	200	А
Single Pulse Avalanche Energy (Note2)		Eas	1514	mJ
Avalanche Energy ,Repetitive (Note1)		Ear	6.05	mJ
Avalanche Current (Note1)		las	17.4	А
Power Dissipation @ Tc= 25°C		P _D	250	W
Storage Temperature Range		Тѕтс	-55 to +150	$^{\circ}\!\mathbb{C}$
Operating Junction Temperature Range		TJ	-55 to +150	$^{\circ}\!\mathbb{C}$
Thermal Resistance Junction to Case		Rejc	0.5	°C/W
Thermal Resistance, Junction-to-Ambient		RөJA	62.5	°C/W

DAM050N020U1

Electrical Characteristics @ Tc =25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit					
OFF Characteristics											
Drain-Source Breakdown Voltage	BV _{DSS}	BV _{DSS} V _{GS} =0V • I _{DS} =0.25mA		-	-	V					
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} =0V, V _{DS} =200V	-	-	1	μ A					
Gate To Source Forward Leakage	I _{GSS}	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA					
ON Characteristics											
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_D=0.25mA$	2.0	-	4.0	V					
Drain-Source On-State Resistance (Note4)	R _{DS(on)}	V _{GS} =10V , I _D =25A	-	30	38	mΩ					
Dynamic Characteristics Note2											
Input Capacitance	C _{iss}	V _{DS} =25V	-	3538	-	pF					
Output Capacitance	C_{oss}	V _{GS} =0V	-	657	-						
Reverse Transfer Capacitance	Crss	Freq.=1.0MHz	-	280	-						
Switching Characteristics Note2											
Turn-On Delay Time	t _{d(on)}	V _{DS} = 100V V _{GS} = 10V	-	58	-	- ns					
Rise Time	t _r		-	195	-						
Turn-Off Delay Time	t _{d(off)}	I _D =50A	-	841	-						
Fall Time	t _f	$R_G = 25\Omega$	-	326	-						
Total Gate Charge	Qg	V _{DS} =160V	-	200	-						
Gate to Source Charge	Qgs	V _{GS} =0 to 10V	-	16	-	nC					
Gate to Drain Charge	Qgd	I _D =50A	-	65	-						
Source-Drain Diode Characteristics											
Diode Forward Voltage	V_{SD}	V _{GS} =0V • I _S =25A	-	-	1.5	V					
Continuous Source Current	I _{SD}		-	-	50	А					
Pulsed Source Current	I _{SM}	Integral PN-diode in MOSFET	-	-	200						
Reverse Recovery Time	T _{rr}	Is=50A • V _G s=0V	-	236	-	ns					
Reverse Recovery Charge	Q _{rr}	di/dt=100A/ μ s	-	3.37	-	μ C					

Repetitive raating : Pulse width limited by maximum junction temperature 2.L=10mH, V_{DD} =50V, R_G =25 Ω , Starting T_J =25 $^{\circ}$ C 3.Pulse test : Pulse width $\leq 300\,\mu$ s , duty cycle $\leq 1\%$

Typical Performance Characteristics, T_J = 25°C unless otherwise noted

150 10V 125 6٧ l_D, Drain Current (A) 57 100 4.5V 75

V_{DS}, Drain-to-Source Voltage (V)

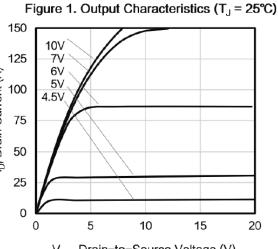


Figure 3. Drain Current vs. Temperature

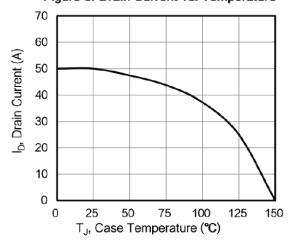


Figure 5. Transfer Characteristics

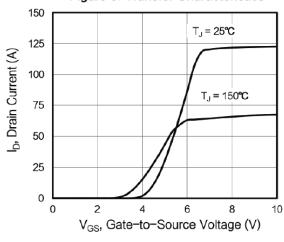
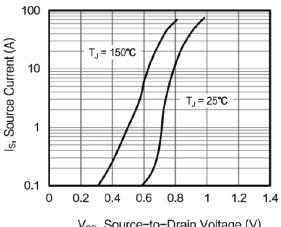



Figure 2. Body Diode Forward Voltage

V_{SD}, Source-to-Drain Voltage (V)

Figure 4. BV_{DSS} Variation vs. Temperature

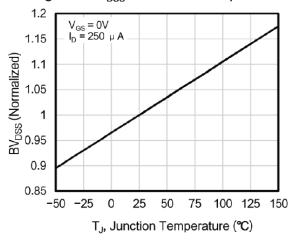
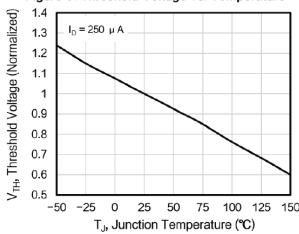
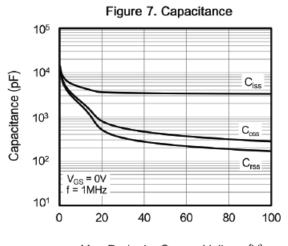



Figure 6. Threshold Voltage vs. Temperature



Rev1.0 May 2025 - 3 -

DAM050N020U1

Typical Performance Characteristics , T_J = 25°C unless otherwise noted

V_{DS}, Drain-to-Source Voltage (V)

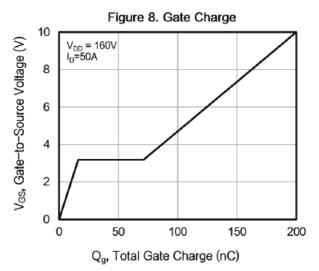
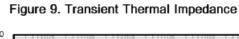
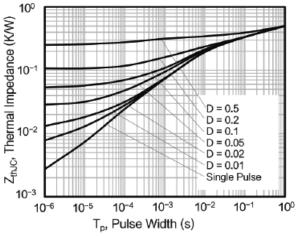
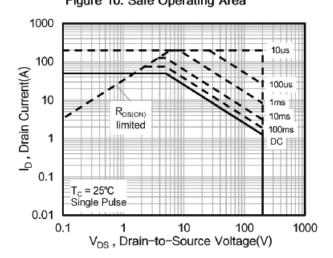





Figure 10. Safe Operating Area

www.dacosemi.com.tw

Rev1.0 - 4 - May 2025

Figure A: Gate Charge Test Circuit and Waveform

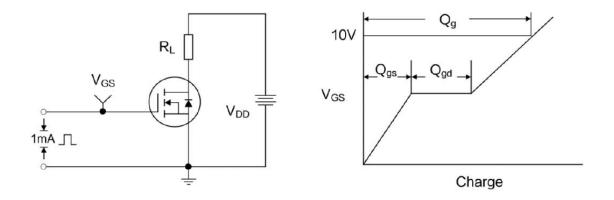


Figure B: Resistive Switching Test Circuit and Waveform

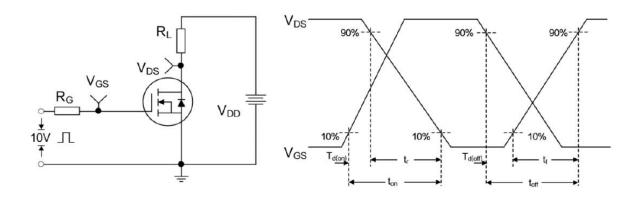
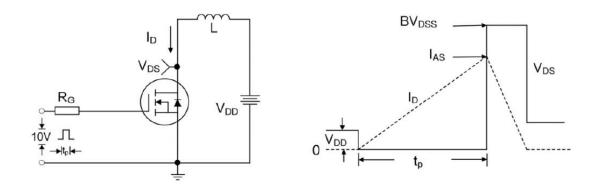



Figure C: Unclamped Inductive Switching Test Circuit and Waveform

www.dacosemi.com.tw

Disclaimer

DACO Semiconductor reserves the right to make modifications, enhancements, improvements, corrections, or other changes to this document and any product described herein without prior notice. For the most up-to-date version, please visit our website.

DACO Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does DACO Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation special, consequential or incidental damages.

Purchasers are responsible for its products and applications using DACO Semiconductor products, including compliance with all laws, regulations, and safety requirements or standards, regardless of any support or application information provided by DACO Semiconductor. "Typical" parameters that may be provided in DACO Semiconductor datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts.

DACO Semiconductor products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems, or equipment, nor in applications where failure or malfunction of DACO Semiconductor's product can reasonably be expected to result in personal injury, death or severe property or environmental damage. DACO Semiconductor accepts no liability for the inclusion and/or use of DACO Semiconductor's products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Purchasers who buy or use DACO Semiconductor products for any unintended or unauthorized applications are required to indemnify and absolve DACO Semiconductor, its suppliers, and distributors from any claims, costs, damages, expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that DACO Semiconductor was negligent regarding the design or manufacture of the part.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage and retrieval system, or otherwise, without the prior written permission of DACO Semiconductor Co., Ltd.